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When planning most scientific studies, one of the first steps is to carry
out a power analysis to define a design and sample size that will result
in a well-powered study. There are limited resources for calculating
power for group fMRI studies due to the complexity of the model.
Previous approaches for group fMRI power calculation simplify the
study design and/or the variance structure in order to make the
calculation possible. These approaches limit the designs that can be
studied and may result in inaccurate power calculations. We introduce
a flexible power calculation model that makes fewer simplifying
assumptions, leading to a more accurate power analysis that can be
used on a wide variety of study designs. Our power calculation model
can be used to obtain region of interest (ROI) summaries of the mean
parameters and variance parameters, which can be use to increase
understanding of the data as well as calculate power for a future study.
Our example illustrates that minimizing cost to achieve 80% power is
not as simple as finding the smallest sample size capable of achieving
80% power, since smaller sample sizes require each subject to be
scanned longer.
© 2007 Elsevier Inc. All rights reserved.

Introduction

When designing a new scientific study a common practice is to
perform a power calculation to evaluate whether the study design
maximizes power: the probability of detecting an effect if it is
present. Power calculations can prevent an investigator from
spending time on an experiment that is underpowered. In other
words, even if there truly is an effect there will not be enough
power to detect it. Power calculations can also prevent from
collecting data that will only cause a slight increase in power. It
could be possible to save money, by scanning each subject for a
shorter amount of time, while still achieving a high level of power.
The goal of this work is to develop methods for carrying out power
calculations for group fMRI experiments.
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A fMRI power calculation must be flexible, allowing inves-
tigators to study a variety of study designs while properly
incorporating the variance of the effect they wish to detect. The
variance of a two-level group fMRI analysis is composed of the
within-subject variance, which is a combination of the first level
design, temporal autocorrelation and variance and the between-
subject variance introduced at the second level.

Although methods have been developed for finding an efficient
first level study designs, which impacts the within-subject variance,
the most efficient first level design does not necessarily ensure the
group level study will have sufficient power (Wager and Nichols,
2003; Friston et al., 1999; Smith et al., 2007; Josephs and Henson,
1999; Dale, 1999; Liu et al., 2001). Limited research on group fMRI
power analysis has been done in the past; Desmond and Glover
(2002) present an approach for calculating power for a group fMRI
model accounting for both within- and between-subject variability.
Simulation-based calculations, which can be time consuming, are
one limitation of this method. The study designs are also limited,
only allowing for block design study paradigms analyzed by a paired
t-test at the first level and estimation of a single group mean at the
second level. Additionally, the temporal autocorrelation is not
incorporated into the within-subject variance estimate, potentially
leading to incorrect variances.

We have improved upon the power calculation of Desmond and
Glover (2002) by creating a more flexible method. Our results will
illustrate the need for a flexible power method by showing that
when the model used in a power analysis does not closely match
the model to be used to analyze the future data, power can be over-
or underestimated. Our power model follows the general two-stage
summary statistics model, making it easy to adapt to current
popular fMRI software packages using the same model such as
Statistical Parametric Mapping (SPM2) and the FMRIB Software
Library (FSL) (Mumford and Nichols, 2006). Highlights of our
method include non-simulation-based calculations, allowing quick
power calculations; incorporation of temporal autocorrelation,
improving upon the accuracy of within-subject variance; flexibility
of first level design, block or event-related study designs can be
studied; and flexibility of second level design beyond a simple one-
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sample t-test. Specification of the variance in a power analysis is
typically difficult, especially in the case of fMRI analysis as the
variance parameters are rarely reported or studied and covariance
structures differ between software packages and can often consist
of upwards of 10 parameters per voxel. Typically, when a power
analysis is carried out it is helpful to compare multiple similar
studies to gain intuition about the variance that should be used in
the power analysis. We use a simple 3-parameter covariance
summary of the covariance supplied by the fMRI software which is
easy to incorporate into a power calculation, helps build intuition
about the covariance associated with fMRI studies and allows for
the comparison of studies regardless of what software was used.

Theory

The model

In the two-stage summary statistics model, the purpose of the
first level is to study each subject independently and the second
level combines first level results from all subjects to obtain group
results. Let each subject’s first level model be given by

Yk ¼ Xkβk þ ϵk ; ð1Þ
where k=1, …, N is a subject indicator, Yk is the Tk×1 vector of
fMRI response data, Xk is the Tk×p design matrix, βk is a vector of
p parameters and the error vector of length Tk is Gaussian
distributed with variance σk

2 and correlation Vk, ϵk∼N (0, σk
2 Vk).

Note that while each subject can have differing number of scans
(Tk), all of the design matrices, Xk, must have the same number of
columns, each column expressing the same effect in each subject’s
data. The first level estimate for each subject, k, using generalized
least squares (GLS) with known Vk is given by

b̂k ¼ ðXkVV
�1
k XkÞ�1XkVV

�1
k Yk
Table 1
Parameters necessary for carrying out a power calculation

Parameter Parameter description

N Number of subjects
α False-positive rate
c First level contrast
Xk First level design matrix for subject k
cg Group level contrast
Xg Group level design matrix
Δ Size of the effect
σk
2 Within-subject variance for subject k

Vk Temporal autocorrelation matrix for subject k
σg
2 Between-subject variability
Varð ̂bkÞ ¼ r2kðXkVV
�1
k XkÞ�1:

Consider a single contrast of these parameter estimates from each
subject cβ̂k, where c is a vector and let the vector of contrast
estimates be denoted β̂ cont= [cβ̂1, …, cβ̂N]′. Using the subscript g
to denote group level parameters, the group level model is given by

b̂cont ¼ Xgbg þ eg; ð2Þ
where Xg is the N×pg design matrix and ϵg∼N (0, Vg), with
Vg=diag(σk

2c(Xk′ Vk
−1 Xk)

−1 c′)+σg
2 IN, where diag(ai) is a

diagonal matrix with the elements a1, …, aN along the main
diagonal, σg

2 is the between-subject variance and IN is an N×N
identity matrix.

At the second level, we can consider a contrast vector, cg. The
estimate of a contrast cgβg and its variance are given by

cg ̂bg ¼ cgðXgVV
�1
g XgÞ�1XgVV

�1
g

̂bcont

Varðcg ̂bgÞ ¼ cgðXgVV
�1
g XgÞ�1cgV:

Under the null hypothesis of no activation, H0: cg β̂ g=0, the test
statistic

T ¼ cg ̂bgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cgðXgVV�1

g XgÞ�1cgV
q

follows a T distribution with N−pg degrees of freedom (tn−pg).
Under the alternative hypothesis of an activation of size Δ, HA: cg
β̂g=Δ, T follows a noncentral T distribution, given by Tn−pg,ncp,
where n−pg are the degrees of freedom, and the noncentrality
parameter is given by

ncp ¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cgðXgVV�1

g XgÞ�1cgV
q ð3Þ

Power for a test of size α is

PðTn�pg ;ncp N t1�a;n�pg Þ; ð4Þ
where t1−α,n−pg is defined as the value that satisfies P (Tn−pgN
t1−α,n−pg)=α. To calculate power for an F-test, allow cg to be a
contrast matrix, with each row corresponding to a single con-
trast and use a noncentral F distribution with ncp=Δ′(cg(Xg′ Vg

−1

Xg)
−1 cg′)

−1 Δ, r=rank(cg) numerator and n−pg denominator
degrees of freedom.

The power calculation requires specification of the parameters
listed in Table 1. Although there are 10 pieces of information that
need to be specified, all but the last four Δ, σk

2, Vk and σg
2, are

known and must be estimated from previous analyses. We take a
region of interest (ROI) approach where Δ, σk

2, Vk and σg
2 are

averaged over all voxels within the ROI, producing a power
calculation that applies to the average voxel in that ROI.
Estimation

Traditionally, the parameters in Table 1 are obtained from previous
studies and we take the same approach here. The design matrices,
contrasts, sample size, false-positive rate and effect size are assumed
to be known by the investigator or readily available from a previous
analysis. Since BOLD fMRI data do not have meaningful units, the
design matrices and contrasts should be constructed so parameter and
contrast estimates reflect % change from baseline fMRI signal. For
block design studies, the regressors must be scaled so the baseline to
activation distance is 1 and for an event-related design, the baseline to
peak distance of an isolated event should be scaled to one. As long as
the sum of the negative elements of the contrasts is −1 and the sum of
the positive elements is 1, then all parameter and contrast values will
represent % change from baseline.

The primary focus of this section will be on the estimation of
parameters associated with the variance: σk

2, Vk and σg
2. We first

focus on general estimation and then specific estimation based on
prior analyses done with SPM2 or FSL are discussed in the Results
section. All parameters involved will first be estimated in a
voxelwise fashion and then averaged within ROI for use in the
power calculation.



263J.A. Mumford, T.E. Nichols / NeuroImage 39 (2008) 261–268
General: within-subject variance estimation
In order to capture the complicated structure of temporal

autocorrelation of fMRI data, software models often calculate
covariance estimates using many parameters. These covariance
estimates, which typically differ over subjects and voxels, are
appropriate when running a data analysis, but when carrying out a
power analysis it is necessary to simplify the covariance structure.
A parsimonious covariance model allows for specification of the
covariance for a future study that will likely generalize over
subjects, be applicable to study designs and sample sizes that differ
from previous studies and is easy to communicate in print. The first
step in developing a parsimonious model is to assume the
covariance is the same across subjects (σk

2 Vk=σw
2 V, k=1, …,

N). Second, we choose a low parameter covariance structure to
summarize the within-subject covariance, which not only simpli-
fies the structure but allows comparison of variance across analyses
that used different covariance structures. Although one would
typically not assume V was the same across subjects, it is a
standard assumption made when carrying out power analysis in
order to calculate power for different sample sizes. A common
assumption is that fMRI noise follows an AR(1)+WN structure
(Zarahn et al., 1997; Purdon and Weisskoff, 1998; Marchini and
Smith, 2003; Woolrich et al., 2001; Burock and Dale, 2000), so we
recommend using this 3-parameter covariance model, which
includes AR(1) correlation, ρ, the AR variance, σAR

2 , and white
noise variance, σWN

2 . The structure and estimation of the AR(1)+
WN covariance are discussed in Appendix A. Typically model
residuals are used to estimate covariance, but since these data are
often discarded by the software during model estimation, our pro-
cedure uses the covariance estimates, which are commonly included
in the analysis results. Although this summary of the covariance is
useful for the purposes of carrying out a power analysis, we
recommend using the default covariance estimation procedure
within the software package when carrying out fMRI analysis.

Special care must be taken if a high-pass filter was applied to
reduce low frequency noise. If the covariance was estimated after
filtering, the AR(1)+WN model will not fit well. Therefore, when
a high-pass filter was used, extra steps may be necessary before
fitting the AR(1)+WN model and the high-pass filter also must be
incorporated into the power calculation.

General: between-subject variance estimation
Last, we need to obtain the between-subject variance, σg

2. This
will require one group fMRI analysis and the procedure for
estimating σg

2 depends on how the software estimated the group
model variance. Some software packages may estimate a separate
between-subject variance and so this can be averaged over voxels
in the ROI to get a single estimate of σg

2.
Other software packages, for example SPM2, may assume that

all within-subject variances are equal. In this case, the group model
does not consider separate between- and within-subject variances,
so

Vk ¼ r2g4IN ð5Þ
instead of

Vg ¼ diagðr2kcðXkVV
�1
k XkÞ�1c VÞ þ r2gIN : ð6Þ

To have the flexibility to calculate power for different design
matrices, Xk, separate between- and within-subject variances are
needed. The goal is to equate Eqs. (5) and (6) and solve for σg

2.
Since the underlying assumption of models that do not estimate a
separate between-subject variance is that within-subject variance is
homogeneous across subjects, it is reasonable to assume,

r2kcðXkVV
�1
k XkÞ�1c V¼ 1=N

XN
k¼1

̂r2
kcðX V

k
̂V
�1
k XkÞ�1c V¼ ̂r2

avg;

where σ̂k
2 and V̂k are the original software estimates. Since the

within-subject variance was not part of the calculation of σg*
2 , it is

possible that the estimate of σg*
2 can be as large or larger than the

contribution that would come from the within-subject covariance in
Eq. (6). Therefore, simply setting σ̂g

2= σ̂g*
2 − σ̂avg

2 can lead to
negative variances so we use

̂r2
g ¼

̂r2
g� � ̂r2

avg if ̂r2
g* � ̂r2

avg z 0;

0 if ̂r2
g* � r̂2

avg b 0:

(
ð7Þ

Constraining the between-subject variance to be positive prevents
the awkward situation of reporting negative variance in a power
analysis but may lead to a conservative power estimate.

This value is calculated within the voxels of the ROI’s and then
are averaged to get a representative ROI estimate of σg

2.

Data

We used the FIAC single subject block design data for subjects
0, 1, 2, 3, 4 and 6 (Dehaene-Lambertz et al., 2006). The stimulus
consisted of French speakers reading a story “The Three Little
Pigs”. The data were collected on a 3-T whole body scanner. There
are 30 slices of data where each slice has a thickness of 4 mm.
There were 195 volumes collected, one volume of data was
collected every 2.5 s (TR=2.5). For the block design study, there
were four types of blocks: (1) same sentence-same speaker (SSt-
SSp): a given sentence said by the same speaker was repeated six
times; (2) same sentence-different speakers (SSt-DSp): a given
sentence was repeated by six different speakers (3 males and 3
females); (3) different sentences-same speaker (DSt-SSp): a given
speaker produced six different sentences; (4) different sentences-
different speakers (DSt-DSp): six different speakers (3 males and 3
females) produces six different sentences. In all data analyses, all
four blocks were modeled and the contrast of interest was SSt-SSp.

Results

Estimation within the FSL framework

To obtain the within-subject covariance and between-subject
variance estimates, a group FSL analysis as well as the individual
first level subject analyses are required.

FSL: within-subject variance estimation
In the first level FSL analysis, a voxelwise unstructured

correlation is estimated from the OLS residuals, regularized by a
Tukey taper, as well as a voxelwise variance (Woolrich et al.,
2001). Since the residuals are discarded during model estimation,
we propose the methods described in Appendix A to summarize
the multi-parameter FSL covariance with the 3-parameter AR(1)+
WN model.

High-pass filtering in FSL removes the fit of a Gaussianweighted
running line smoother by premultiplying the data and design by a
filtering matrix, reducing low frequency drift. Filtering is done prior



Table 2
Estimated AR(1)+WN parameters from FSL and SPM2 for block design
study, averaged over ROI defined by voxels with FSL group analysis T-
statistics larger than 2

Subject Study
design

ρFSL σARtot−FSL
2 σWNFSL

2 ρSPM2 σARtot−SPM2
2 σWNSPM2

2

1 Block 0.646 0.618 1.362 0.482 0.535 1.591
2 Block 0.700 0.655 0.949 0.536 0.852 1.086
3 Block 0.758 0.764 1.077 0.529 0.850 1.254
4 Block 0.740 0.535 0.910 0.515 0.535 0.309
5 Block 0.744 0.927 1.027 0.545 1.28 1.22
6 Block 0.809 2.38 2.551 0.550 3.14 2.461

Parameters are expressed in % change from baseline.
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to covariance estimation hence the AR(1)+WN model will not be a
good fit. Therefore, a non-high-pass filtered analysis must be carried
out to supply a covariance estimate that the AR(1)+WN model will
fit. Then the high-pass filtering matrix, which is a function of time
series length and filter cutoff, is applied to the fitted AR(1)+WN
estimate by pre- and post-multiplying the covariance estimate the by
the filter matrix and its transpose, respectively. This filtered
covariance is used in the power calculation.

To evaluate our AR(1)+WN covariance estimate, we compared
T-statistics derived using the FSL covariance to T-statistics derived
using the high-pass filtered AR(1)+WN covariance estimate in all
voxels. Fig. 1 displays the results for a single subject and since the
points on the plot are dense, the red line indicates the overall trend
of the data from a fitted loess model (results were similar for other
subjects). The fitted model runs close to the diagonal indicating the
T-statistics are similar, although there is some bias for negative test
statistic values that would result in conservative power estimates.

Using an ROI defined by voxels with a test statistic value larger
than 2 for the SSt-SSp contrast of the block design FIAC study,
average AR(1)+WN parameter estimates based on an FSL analysis
for 6 subjects are given in columns 3–5 of Table 2. These values
should be viewed when carrying out a power analysis to build
intuition on the covariance structure of fMRI data.

FSL: between-subject variance estimation
Voxelwise estimates of the between-subject variance are created

and stored as an image during group FSL analyses, so simply
averaging this value over the ROI gives the value of σg

2 needed for
the power calculation. For these data analysis, σg

2=0.433.

SPM2

As with FSL, a group analysis along with the corresponding
single subject analyses are required to estimate the variance
parameters necessary for calculating power.
Fig. 1. Comparing T-statistics derived using the FSL unstructured covariance
from an analysis using a high-pass filter (TFSL) and the high-pass filtered AR
(1)+WN covariance derived from the ASL covariance (TAR(1) +WN) across
all voxels for a single subject. The red line shows the trend of the data using a
loess fit.
SPM: within-subject variance estimation
SPM2 uses a global estimate of the temporal autocorrelation that

is based on a two-term Taylor series expansion of an AR(1)
correlation about ρ=0.2 (Friston et al., 2002a,b). Specifically, the
correlation is derived from CovSPM2=λ1C1+λ2C2, where C1i,j=
0.2|i−j| andC2i,j= |i− j|(0.2)

|i−j|−1 and single global estimates of λ1 and
λ2 are estimated using ReML. The variance, σk

2, is estimated at each
voxel, and so σk

2Cov̂SPM2/λ̂1 is the voxelwise covariance used to
estimate the AR(1)+WN parameters as described in Appendix A.

In SPM2, the high-pass filter is built into the design matrix as a
set of discrete cosine transform functions. It does not interfere with
the AR(1)+WN covariance estimation, although it should be
included in the first level design matrix in power calculations and
contrasts for hypothesis testing should be adjusted accordingly.
Averages of the AR(1)+WN parameters based on the SPM
covariance are displayed in columns 6–8 of Table 2. Note that
since SPM is using a different covariance model than FSL, the AR
(1) parameters will tend to differ. Although there are slight
differences in the AR(1)+WN parameter estimates, there is little
difference in calculated power between the two sets of estimates
(see Supplemental materials).

SPM: between-subject variance estimation
The group model in SPM2 is estimated under the assumption of

equal first level within-subject covariances. Therefore, separate
within- and between-subject variances are not estimated during a
group analysis, instead a single estimate, σ̂g*

2 , is calculated.
Therefore, we use the methods described in the General: within-
subject variance estimation section. Using the same ROI described
previously, the between-subject estimate based on the SPM
analysis was found to be σg

2=0.409.

Calculating power

We first focus on consequences when the power model does not
match the model used on the future data. Ignoring temporal
autocorrelation when estimating power, but using a model that
estimates temporal autocorrelation on the newly collected data, is
an example of the models not matching. Does this impact power?
Likewise, does the omission of hemodynamic response function
(HRF) convolution with our first level regressors impact power?

The regressor used had 15 s activation blocks followed by 15 s
rest blocks and we compared power for the 4 combinations of
dependent/independent noise and with/without HRF convolution.
The FSL high-pass filter was used whenever the covariance was
modeled. We used the average subject parameter values from the
FSL analysis in Table 2 ρ=0.73, σARtot

2 =0.980 and σWN
2 =1.313, as
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well as the group effect size of δ=0.69% and σg
2=0.433. For all

power calculations, 20 subjects and a Type I error of α=0.005 were
used.

In Fig. 2, ρ, σAR
2 and σWN

2 are varied in the top, middle and
lower panels, respectively, while in each panel the other 2 variance
parameters are fixed at their mean values. In all cases the dif-
ference in power is largest between the correct model and the
model with both incorrect noise and design, with a maximum
difference of 14%. In the top panel, the difference in power
between the model with the wrong noise and the correct model and
can be as large as a 9%. Specifically, for the FIAC data, where
ρ=0.73, a simplified power calculation omitting temporal auto-
correlation overestimates a power of nearly 80% when the correct
model yields a smaller power of 72%. Since the temporal
autocorrelation can have such an impact on the power estimate,
it is important to include it.

In the case where the temporal autocorrelation is modeled
correctly, but the design is incorrect, the overestimation of power is
as large as 8%. So it is also important not to simplify the power
model by using a boxcar function that has not been convolved with
an HRF as it will tend to overestimate power.

The main application of power calculations is for planning a
study design. Power analyses can be used to prevent from spending
time and money on an experiment that is under powered as well as
Fig. 2. An illustration of how power differs when the model is incorrectly specifie
noise is independent. This comparison is made over a range of ρ, σAR

2 and σWN
2 i
preventing the collection of additional data that will have little
impact on power. Using the mean AR(1)+WN parameters, we
calculated power curves for different sample sizes for the block
design described previously. The model included the boxcar
regressor convolved with an HRF and an intercept. The bottom x-
axis of Fig. 3 reflects how many on/off cycles of 30 s have
occurred and the top axis shows the corresponding time in minutes.
The power curves are restricted by a budget of $7600 where each
subject has a base cost of $300, for subject preparation, and
additional scanner time is $10/minute.

Limitations from the budget and values of the mean and
variance for this study imply only sample size between 18 and 22
subjects achieve at least 80% power. Focusing on the maximum
power when the entire budget of $7600 is used, the most powerful
analysis would be with 21 subjects yielding 83% power.

Another feature shown with the power curves, is the point of
diminishing returns where additional scanner time has very little
impact on the power. For this study in particular, power
increases less than 1% for each additional on/off cycle after
approximately 14 cycles. For a sample size of 17 subjects, for
example, higher levels of power are practically impossible to
reach even if the subjects are scanned for very long periods of
time. The within-subject variance decreases as the number of
cycles increase and when the within-subject variance is
d either by not convolving a boxcar regressor with an HRF or assuming the
n the top, middle and bottom panels, respectively.



Fig. 3. Power estimates for a block design study where the total cost is
limited to $7600. Each curve is for a different sample size and the grey
dotted line indicates 80% power.
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sufficiently smaller than the between-subject variance, the
between-subject variance drives the power calculation. For this
study in particular, the point of diminishing returns occurs when
the within-subject variance is approximately 1/4 of the between-
subject variance. This ratio varies with sample size as well as
Fig. 4. Number of cycles and cost to achieve 80% power. The left panel shows how
when there is a base cost of $300, for subject preparation, and additional scanner
the size of δ, so the result does not generalize to other study
designs or regions of the brain.

If we expect our future data to behave similarly to the data used
in the power analysis, a sample size of at least 18 subjects should
probably be used, even if the budget is increased to allow for more
scanner time. Also, knowing the point of diminishing returns can
prevent unnecessary spending. With 19 subjects, scanning each
subject for 8 versus 10 min will not have much of an impact on
power, but less time in the scanner saves money and prevents the
subject from getting bored.

Another feature is different sample size/scanner time combina-
tions result in the same amount of power. The left panel of Fig. 4
shows the number of cycles required to achieve 80% power for
different sample sizes and the right panel shows the corresponding
costs. Interestingly, in this case, the cost does not decrease linearly
as the number of subjects increases; instead there is a minimum
cost at 20 subjects. The cost of the study with the fewest subjects,
18, is the largest since it requires the subject to be scanned longer.

Discussion

Power calculations are useful tools for designing studies,
especially in the case of fMRI where the cost per subject is high.
We have introduced a new method of calculating power for group
fMRI studies, overcoming many weaknesses of previous power
calculation approaches by incorporating temporal autocorrelation,
allowing for either block or event-related study designs, allowing
multiple regressors in the first level model, having a flexible group
model and using a general method can easily adapt to the models of a
variety of fMRI software packages. Additionally, our model can
easily be extended to calculate power for three level models, for
example, where multiple runs per subject and multiple subjects are
studied.

Specification of the variance is the most difficult task in power
calculations, but especially in the case of group fMRI where there
many cycles per subject are required and the right panel shows the total cost
time is $10/minute.
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is little intuition about variance since it is rarely reported. We break
the task down into calculating the within-subject and between-
subject variance separately. Although previous power methods
have simplified the within-subject covariance by assuming the data
are not temporally correlated, we illustrate how this assumption
can lead to an overestimation of power. We propose estimating the
covariance from a previous data analysis using a 3-parameter AR
(1)+WN model. This model achieves two things: reduces the
number of parameters to a manageable number that can easily be
reported and compared and allows comparison of covariances from
different software. It is common to assume the covariance is the
same across subjects in a power analysis, in order to calculate
power for a variety of sample sizes. Although this is not an
appropriate assumption for an actual data analysis. Typically
subjects do not exhibit the same amount of correlation and variance
and Beckmann et al. (2003) show that under the assumption that
variance are the same across subjects, test statistics tend to be
conservative.

Power curves, such as the ones we constructed, supply useful
information for study planning. For example, for each sample size,
at some point additional scans cause very little improvement in
power. This occurs when the between-subject variance is
sufficiently smaller than the within-subject variance. The ratio
of between- to within-subject variance at the point of diminishing
returns varies with sample size and effect size, δ. Knowing the
point of diminishing returns helps budget a study more efficiently.
It is also possible that different scan/subject combinations result in
the same amount of power. Depending on how scanner fees are
charged, to reach a reasonable power level, it may be less
expensive to scan more subjects for less time, as our results
illustrated.

The experimental design of the data used for estimating power
parameters should be similar to the design of the experiment for
which power predictions are being made. Specifically, event-
related designs should be used to predict power for event-related
studies and block designs should be used to predict power for
block design studies. This is due to nonlinearities in the BOLD
response which are not accurately modeled by the usual HRF
convolution of the stimulus (Vazquez and Noll, 1998), though see
Wager et al. (2005).

Likewise, even if the study designs are the same, the approach
to modeling the effect for the new study should be similar to the
approach taken in the initial study used to estimate the parameters
of the power calculation. As shown in Mechelli et al. (2003), for a
block design study, a more sensitive data analysis was achieved
by using an event-related analysis compared to a block design
analysis of the data. If one were to use a simple block regressor
convolved with an HRF for the power analysis and an event-
related model for the new data analysis, power may be over- or
underestimated. Similarly, if the model is not correct, in that it
does not properly describe the BOLD response, the power
estimate will not be correct since it assumes the correct model is
being used.

Conclusion

We have presented a general method for estimating power for
group level fMRI studies and have shown how this general method
can be adapted to be used with models from different software
packages. The flexibility of our method should make it appealing
for investigators to use.
Acknowledgments

This work is supported by NIH grants R01 DA15410 and R01
EB004346-01A1.
Appendix A. Parameterization of the AR(1)+WN covariance

Under the assumption that the error, ϵ=(ϵ1, …, ϵT), follows an
AR(1)+WN covariance, the specific structure is given by

Cov ϵi;ϵj
� � ¼ ðr2AR=ð1� q2ÞÞqji�jj if i p j;

ðr2AR=ð1� q2ÞÞ þ r2WN if i ¼ j:

�
ð8Þ

Note the total contribution to the variance from the AR(1) model
can be denoted as σARtot

2 =σAR
2 /(1−ρ2), so the model can also be

expressed as

Cov ϵi;ϵj
� � ¼ r2ARtot

qji�jj if i p j;
r2ARtot

þ r2WN if i ¼ j:

(
ð9Þ

Taking a Fourier transform of the covariance, the corresponding
power spectrum is given by

FðxÞ ¼ r2AR=ð1� 2qcosðxÞ þ q2Þ þ r2WN:

The estimation of the AR(1)+WN parameters will vary depending
on what information the software saves when carrying out an
analysis. If residual values are available, since the AR(1)+WN
covariance is a special case of an autoregressive moving average
with 1 autoregressive parameter and 1 moving average parameter
(ARMA(1, 1)), any method such as nonlinear least squares or
maximum likelihood-based approaches can be used to estimate the
AR(1)+WN parameters. Most statistical software packages, such
as R, Splus and Matlab, have functions that will carry out this
estimation.

To save space, typically the residuals are discarded during an
fMRI data analysis although the covariance estimates are saved.
The covariance estimates can be used to obtain the AR(1)+WN
parameters, as described below using a two step process. The first
step estimates the WN parameter and the second step estimates the
AR(1) parameters.

A property of the AR(1)+WN power spectrum is the height of
the spectrum at high frequencies is a close approximation of σWN

2 .
Therefore, the white noise variance will be estimated by averaging
the height, at high frequencies, of the power spectrum. The
Wiener–Khinchin relation states that the Fourier transform of the
autocovariance is the periodogram or estimated power spectrum for
that time series. This is given 5 by

IðxÞ ¼
XT�1

i�j¼ðT�1Þ
Ci;je

xði�jÞ ffiffiffiffiffi�1
p

; ð10Þ

where I(ω) is the power at frequency ω, T is the number of time
points, and Ci,j is the (i, j)th element of the covariance matrix
which would be the covariance estimate obtained from an FSL or
SPM analysis. Note that ω=2πM/T, for M=1, … m where m=T/2
for even values of T and m=(T−1)/2 for odd T. Then the estimate,
σ̂WN
2 is given by the average power of the top 1/3 frequencies of

the periodogram. Smaller cutoffs produced similar covariance
estimates, but are less efficient.
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Once the estimate σ̂WN
2 is known, we can simply remove it

from the autocovariance estimate using subtraction, CARi,i
=Ci,i−

σ̂WN
2 and CARi≠j

=Ci≠j. The resulting covariance then follows an AR
(1) structure and the estimation of the AR(1) correlation parameter,
ρ, can be found using the Yule–Walker equations

/̂0

/̂1

v
/̂T�1

0
BB@

1
CCA ðqÞ ¼

/̂1

/̂2

v
̂/T

0
BB@

1
CCA ð11Þ

where ϕ̂i−j are the correlation estimates from CAR, ϕ̂i−j=CARi,j
/

CAR0,0
. Now that we have an estimate, ρ̂ from the Yule–Walker

equations, since the AR(1) variance is given by CAR0,0
=σAR

2 /
(1−ρ2), we can obtain the estimate by σ̂AR

2 =CAR0,0
(1− ρ̂2).
Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.neuroimage.2007.07.061.
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